Fast computation of magic monotones
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1. Summary 4. Our Method

Motivation: Computation of Magic Monotones - Q1. Reducing the size is inevitable. Can we predict contributing states? ——
» Magic monotones quantify cost of “hard” operations in FTQC Stabilizer states S, Matrix ASY for Stabilizer Extent 0:+1 Hitsm:+5 B:—3 B3
» Application: classical simulation and synthesis of Clifford+T circuit P - . .
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» Problem: exact evaluation tends to be very hard. - B B B E A m L.
. . . @(n2)_ . 9 0 eg
» cf. size of n-qubit stabilizer states |S,,| = 2 . naively only n < 5. , 20 ™ - ..m
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Contribution: Scale-up of Computation y .
» Speed up magic monotone computation x50 ~ x300 faster for n = 5 Al. Reduction by Overlaps
» Scale up to n = 8,9 qubits (naive method requires > 107 bytes) » Overlap (= Stabilizer Fidelity ~ closeness between states) is a good indicator
» Our method: Column Generation + Fast computation of overlaps for the prediction. The more extreme the overlaps, the more important.
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» overlap = a,ij = { where a; is the j-th column of ARM A>E

2. Magic Monotones
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» Interpreted as distance p from set of free states S,,.
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» Requirements: tairthrul, submultiplicative, monotonic, convex. 0.02 Sheries o, W T T
S (non-zero 3 45 | ,
“Free” states: stabilizer states &, %D o weights) = . \_\_ W}}en chosen with Overolapsv
State inside can be readily prepared in FTQC g oo A 'a.\‘\Stﬂl good after reduction.
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(Distance p) = cost to prepare p L
5 35|-) — - Q2. We got an approximate solution. Can we guarantee the optimality? ——
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» Steps for evaluating magic monotones: Iﬂp - o "1 - I Solve with the reduced matrix :
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1. Represent the target state as the linear combination of stabilizer states P= 0 g — Approx1mate solution :
2. Minimize the L'-norm of the linear combination coefficients A BB B e e e e e e emee—eemee——a—at
» Robustness of Magic (RoM; Howard & Campbell, 2017): .
R(p) = min {Hx”l p=0ecs, gjjo'j} A2. Column Generation (CG) method » SG fog)ROM
— N =
» Stabilizer Extent (SE; Bravyi et al., 2019): » Dual problems are equivalent to primal problems. =
~= 2.62
(1)) = min {ll2ll} | 1) = )0 s, 23165 | > RoM: max {bTy | [l4fMTy| <1} «
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» The reason why the L'-norm ||z||, quantifies the distance p: > SE: max {Re(bey)2 I AEETy‘ < 1} = \ AERENAN
Convex combination of yeC o0 g 2.58
negative /positive terms 0 » CG regenerate removed but contributing columns. 1
P4 P1 P+ 0-9 » Repeatedly add columns a; s.t. |a;f.y| > 1. 200 T
ép s » No more restoration <= Exactness of the solution ! QIE 4 i 67 8k9 10
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- Finally, we computed the exact solution! .
p=1.3p1 +0.6p0 —0.6p3 —0.304, =1.90, —0.9p_ P 50 i F o
R(p) :‘1.3| 4+ |0.6| 4+ |—O.6 4+ |—O.3‘ — w X241 = (Cost) _———_—__ 10 m <« Restore contributing states
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L'-norm of the coefficients ||z||, quantifies distance p Zoi . | — Exact solution &
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» Application: near-Clifford simulators and circuit synthesis - /
» RoM and SE quantify the simulation cost of different simulators _ _
» Matrix-based reformulation to convex optimization problems 5. SUbrOUtlneS for ComPUtlng Over|ap5
: _ . RoM . : :
RoM: Rlp) = a:glléllslnl {qul A = b} (Linear Programming) Calculating overlaps is the bottle-neck. We speed up by the methods below:

SE: &(|¢)) = min {||z||] | ASFz = b} (Second-Order Cone Programming) RoM: Fast Walsh—Hadamard Transform (FWHT)
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» In-place algorithm for multiplying a vector by a tensor product of matrices

3_ Result » Variant: Pauli decomposition in O(n4") time and O(4") space

Overlap Calculation =~ Multiply H, |Fast Walsh-Hadamard Transform Only O(n2") steps!
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» The minimization problems are super-exponentially large: |S,| = 20(’) Input:v Output:H,v

» Heinrich & Gross (2019) scaled up RoM computation for \H)®" and |F)®”. [+A) +A +A +B +A +B +C +D
» We propose an improvement strategy for general states. +1+1®n +B +B "+A —-B +A —B +C —-D
qubit count n 5 6 7 8 9 ] e LC +C +D }A 4B —C -D
states |S,| 2.4 x 10° 3.2 x 10° 8.1 x 10 4.2 x 10" 4.3 x 10% o
size of AFM 379MiB 95GiB  86TiB  S6PiB  172EiB H™ = He \+D/ | B O FRASEISCD
RoM naive time 2min X X X X
our time 23s  7.0min  1.6h 2.0d X SE: Stabilizer Pruning
size of A)" 1011MiB  254GiB 153 TiB  153PiB  305EiB » We propose Stabilizer Pruning based on Branch and Bound method.
SE naive time 7.7 min X X X X » It is in the same spirit as FWHT, but even faster.
our time L.5s 38s ~ 129s  88min  19.2h » It finds max|(¢;|1))| among 4.3 x 106 states (n = 9) within 26 min.
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