Fast computation of magic monotones

UTOKVO

Hiroki Hamaguchi¹ Kou Hamada¹ Nobuyuki Yoshioka²

¹Department of Mathematical Informatics, University of Tokyo ²Department of Applied Physics, University of Tokyo

Robustness of Magic

Stabilizer Extent

CG for RoM

Convergence

 $2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$

Iterations k

(n=8)

1. Summary

Motivation: Computation of Magic Monotones

- Magic monotones quantify cost of "hard" operations in FTQC
- Application: classical simulation and synthesis of Clifford+T circuit
- > Problem: exact evaluation tends to be **very hard**.
- ▶ cf. size of *n*-qubit stabilizer states $|S_n| = 2^{O(n^2)}$; naively only $n \leq 5$.

Contribution: Scale-up of Computation

- **Speed up** magic monotone computation $\times 50 \sim \times 300$ faster for n = 5
- **Scale up** to n = 8, 9 qubits (naive method requires > 10^{17} bytes)
- Our method: Column Generation + Fast computation of overlaps

4. Our Method

A1. Reduction by Overlaps

Overlap (\approx Stabilizer Fidelity \approx closeness between states) is a good indicator for the prediction. The more extreme the overlaps, the more important.

2. Magic Monotones

- \triangleright Interpreted as distance p from set of free states S_n .
- Requirements: faithful, submultiplicative, monotonic, convex.
 - "Free" states: stabilizer states S_n

- Steps for evaluating magic monotones:
 - 1. Represent the target state as the linear combination of stabilizer states 2. Minimize the L^1 -norm of the linear combination coefficients
- Robustness of Magic (RoM; Howard & Campbell, 2017):

$$\mathcal{R}(\rho) = \min_{x \in \mathbb{R}^{|\mathcal{S}_n|}} \left\{ \|x\|_1 \mid \rho = \sum_{\sigma_j \in \mathcal{S}_n} x_j \sigma_j \right\}$$

• overlap
$$= a_j^{\top} b = \begin{cases} 2^n \operatorname{Tr}[\sigma_j \rho] & (\operatorname{RoM}) \\ \langle \phi_j | \psi \rangle & (\operatorname{SE}) \end{cases}$$
 where a_j is the *j*-th column of $A_n^{\operatorname{RoM}}, A_n^{\operatorname{SE}}$.

Q2. We got an approximate solution. Can we guarantee the optimality?

$$\rho_{-} \rightarrow \rho_{+} \rightarrow \rho_{+}$$

 $\rho_{-} \rightarrow \rho_{+} \rightarrow \rho_{+}$
 $\rho_{-} \rightarrow \rho_{+} \rightarrow \rho_{+}$

A2. Column Generation (CG) method

- Stabilizer Extent (SE; Bravyi et al., 2019): $\xi(\ket{\psi}) = \min_{x \in \mathbb{C}^{|\mathcal{S}_n|}} \left\{ \|x\|_1^2 \mid \ket{\psi} = \sum_{\ket{\phi_j} \in \mathcal{S}_n} x_j \ket{\phi_j}
 ight\}$
- The reason why the L^1 -norm $||x||_1$ quantifies the distance p:

 L^1 -norm of the coefficients $||x||_1$ quantifies distance p

- Application: near-Clifford simulators and circuit synthesis RoM and SE quantify the simulation cost of different simulators Matrix-based reformulation to convex optimization problems
 - $\mathsf{RoM:} \quad \mathcal{R}(\rho) = \min_{x \in \mathbb{R}^{|\mathcal{S}_n|}} \left\{ \|x\|_1 \mid A_n^{\mathrm{RoM}} x = b \right\} \text{(Linear Programming)}$ SE: $\xi(|\psi\rangle) = \min_{x \in \mathbb{C}|S_n|} \left\{ \|x\|_1^2 \mid A_n^{SE}x = b \right\}$ (Second-Order Cone Programming)
- 2.64 $\mathcal{A}_{\mathcal{X}}^{\mathcal{X}}$ 2.62 Dual problems are equivalent to primal problems. $\triangleright \operatorname{RoM:} \max_{y \in \mathbb{R}^{4^n}} \left\{ b^\top y \mid \left\| A_n^{\operatorname{RoM}} y \right\|_{\infty} \leq 1 \right\}$ uoinnlos 2.58 $\blacktriangleright \mathsf{SE:} \max_{y \in \mathbb{C}^{2^n}} \left\{ \operatorname{Re}(b^{\dagger}y)^2 \mid \left\| A_n^{\operatorname{SE}^{\dagger}}y \right\|_{\infty} \leq 1 \right\}$ CG regenerate removed but contributing columns. 2.56► Repeatedly add columns a_j s.t. $|a_j^{\dagger}y| > 1$. \blacktriangleright No more restoration \iff Exactness of the solution Finally, we computed the exact solution! **Restore contributing states** ρ_{-} \rightarrow Exact solution \Im

5. Subroutines for Computing Overlaps

Calculating overlaps is the bottle-neck. We speed up by the methods below:

RoM: Fast Walsh–Hadamard Transform (FWHT)

In-place algorithm for multiplying a vector by a tensor product of matrices

Result

► The minimization problems are super-exponentially large: $|S_n| = 2^{O(n^2)}$ ► Heinrich & Gross (2019) scaled up RoM computation for $|H\rangle^{\otimes n}$ and $|F\rangle^{\otimes n}$. ► We propose an improvement strategy for **general** states.

qubit count n		5	6	7	8	9
S	states $ \mathcal{S}_n $	2.4×10^{6}	3.2×10^{8}	8.1×10^{10}	4.2×10^{13}	4.3×10^{16}
	size of $A_n^{ m RoM}$	379 MiB	95 GiB	86 TiB	86 PiB	172 EiB
RoM	naive time	$2{\sf min}$	×	×	×	×
	our time	2.3 s	$7.0{\sf min}$	1.6h	2.0d	×
SE	size of $A_n^{ m SE}$	1011 MiB	$254\mathrm{GiB}$	$153\mathrm{TiB}$	153 PiB	305 EiB
	naive time	$7.7{ m min}$	×	×	×	×
	our time	1.5 s	3.8 s	$12.9\mathrm{s}$	8.8 min	$19.2\mathrm{h}$

Variant: Pauli decomposition in $\mathcal{O}(n4^n)$ time and $\mathcal{O}(4^n)$ space

SE: Stabilizer Pruning

- We propose Stabilizer Pruning based on Branch and Bound method.
- It is in the same spirit as FWHT, but even faster.
- ► It finds $\max_{\phi_j \in S_n} |\langle \phi_j | \psi \rangle|$ among 4.3×10^{16} states (n = 9) within 26 min.