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1. Summary
Motivation: Computation of Magic Monotones
▶ Magic monotones quantify cost of “hard” operations in FTQC
▶ Application: classical simulation and synthesis of Clifford+T circuit
▶ Problem: exact evaluation tends to be very hard.
▶ cf. size of n-qubit stabilizer states |Sn| = 2O(n

2); naively only n ≤ 5.
Contribution: Scale-up of Computation
▶ Speed up magic monotone computation ×50 ∼ ×300 faster for n = 5
▶ Scale up to n = 8, 9 qubits (naive method requires > 1017 bytes)
▶ Our method: Column Generation + Fast computation of overlaps

2. Magic Monotones
▶ Interpreted as distance p from set of free states Sn.
▶ Requirements: faithful, submultiplicative, monotonic, convex.

S1 ∋ |+⟩ →

S1 ∋ |−⟩ →

p

1ρ−

ρ+
ρ ρ = (1 + p)ρ+ − pρ−

R(ρ) := 2p + 1

(Distance p) = cost to prepare ρ

“Free” states: stabilizer states Sn
State inside can be readily prepared in FTQC

▶ Steps for evaluating magic monotones:
1. Represent the target state as the linear combination of stabilizer states
2. Minimize the L1-norm of the linear combination coefficients

▶ Robustness of Magic (RoM; Howard & Campbell, 2017):
R(ρ) = min

x∈R|Sn|

{
∥x∥1

∣∣∣ ρ = ∑
σj∈Sn xjσj

}
▶ Stabilizer Extent (SE; Bravyi et al., 2019):

ξ(|ψ⟩) = min
x∈C|Sn|

{
∥x∥21

∣∣∣ |ψ⟩ = ∑
|φj⟩∈Sn xj |φj⟩

}
▶ The reason why the L1-norm ∥x∥1 quantifies the distance p:
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Convex combination of

negative/positive terms
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ρ =1.3ρ1 + 0.6ρ2 − 0.6ρ3 − 0.3ρ4 = 1.9ρ+ − 0.9ρ−
R(ρ) =|1.3| + |0.6| + |−0.6| + |−0.3| = 0.9× 2 + 1 = (Cost)
L1-norm of the coefficients ∥x∥1 quantifies distance p

▶ Application: near-Clifford simulators and circuit synthesis
▶ RoM and SE quantify the simulation cost of different simulators

▶ Matrix-based reformulation to convex optimization problems
RoM: R(ρ) = min

x∈R|Sn|

{
∥x∥1

∣∣ ARoM
n x = b

}
(Linear Programming)

SE: ξ(|ψ⟩) = min
x∈C|Sn|

{
∥x∥21

∣∣∣ ASE
n x = b

}
(Second-Order Cone Programming)

3. Result
▶ The minimization problems are super-exponentially large: |Sn| = 2O(n

2)
▶ Heinrich & Gross (2019) scaled up RoM computation for |H⟩⊗n and |F ⟩⊗n.
▶ We propose an improvement strategy for general states.

qubit count n 5 6 7 8 9
states |Sn| 2.4× 106 3.2× 108 8.1× 1010 4.2× 1013 4.3× 1016

RoM
size of ARoM

n 379MiB 95GiB 86TiB 86PiB 172EiB
naive time 2min × × × ×
our time 2.3 s 7.0min 1.6 h 2.0 d ×

SE
size of ASE

n 1011MiB 254GiB 153TiB 153PiB 305EiB
naive time 7.7min × × × ×
our time 1.5 s 3.8 s 12.9 s 8.8min 19.2 h

4. Our Method
Q1. Reducing the size is inevitable. Can we predict contributing states?� �
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A1. Reduction by Overlaps
▶ Overlap (≈ Stabilizer Fidelity ≈ closeness between states) is a good indicator

for the prediction. The more extreme the overlaps, the more important.

▶ overlap = a⊤j b =
{
2nTr[σjρ] (RoM)
⟨φj|ψ⟩ (SE) where aj is the j-th column of ARoM

n , ASE
n .

Contributing
States

(non-zero

weights)

ρ+ρ−

When chosen with overlaps,
still good after reduction.

Q2. We got an approximate solution. Can we guarantee the optimality?� �
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Solve with the reduced matrix

→ Approximate solution
ρ−

ρ+
ρ

� �

A2. Column Generation (CG) method
▶ Dual problems are equivalent to primal problems.
▶ RoM: max

y∈R4n

{
b⊤y

∣∣∣ ∥∥∥ARoM
n

⊤
y
∥∥∥
∞
≤ 1

}
▶ SE: max

y∈C2n

{
Re(b†y)2

∣∣∣ ∥∥∥ASE
n

†
y
∥∥∥
∞
≤ 1

}
▶ CG regenerate removed but contributing columns.
▶ Repeatedly add columns aj s.t.

∣∣∣a†jy∣∣∣ > 1.
▶ No more restoration ⇐⇒ Exactness of the solution 1 2 3 4 5 6 7 8 9 10
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CG for RoM
(n = 8)

Convergence

Finally, we computed the exact solution!� �
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Restore contributing states

→ Exact solution
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5. Subroutines for Computing Overlaps
Calculating overlaps is the bottle-neck. We speed up by the methods below:
RoM: Fast Walsh–Hadamard Transform (FWHT)
▶ In-place algorithm for multiplying a vector by a tensor product of matrices
▶ Variant: Pauli decomposition in O(n4n) time and O(4n) space

Overlap Calculation ≈ Multiply Hn

Extracted ARoM
n

⊤
b




+A

+B

+C

+D




+1+1

−1+1

⊗n

=

H⊗n
1 = Hn

Fast Walsh–Hadamard Transform Only O(n2n) steps!
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SE: Stabilizer Pruning
▶ We propose Stabilizer Pruning based on Branch and Bound method.
▶ It is in the same spirit as FWHT, but even faster.
▶ It finds max

φj∈Sn
|⟨φj|ψ⟩| among 4.3× 1016 states (n = 9) within 26min.


